Genetic Algorithms

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu
North Carolina A \& T State University

September 6, 2021

A Working Example

Find x that maximize the following function?

Initialize random pobulation

```
pop = np.random.randint(2, size=(POP_SIZE, CHROMOSOME_SIZE))
```

- A binary population of size POP_SIZE and the size of each chromosome is CHROMOSOME_SIZE

Initialize random pobulation

```
pop = np.random.randint(2, size=(POP_SIZE, CHROMOSOME_SIZE))
```

- A binary population of size POP_SIZE and the size of each chromosome is CHROMOSOME_SIZE
- The CHROMOSOME_SIZE will be chosen such that the precision of the solution is up to certain value.

Initialize random pobulation

```
pop = np.random.randint(2, size=(POP_SIZE, CHROMOSOME_SIZE))
```

- A binary population of size POP_SIZE and the size of each chromosome is CHROMOSOME_SIZE
- The CHROMOSOME_SIZE will be chosen such that the precision of the solution is up to certain value.
- For instance, what is the float point precession of the solution that we need from 0 to 5 ?

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5
- CHROMOSOME_SIZE will have a size 10

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5
- CHROMOSOME_SIZE will have a size 10
- If CHROMOSOME $=0000000111$ then a decoded value will be

$$
X_{\min }+\operatorname{BASE}_{10}(0000000111) * \frac{X_{\max }-X_{\min }}{2^{\text {CHROMOSOOLESILIE }}-1}
$$

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5
- CHROMOSOME_SIZE will have a size 10
- If CHROMOSOME $=0000000111$ then a decoded value will be

$$
X_{\min }+\mathrm{BASE}_{10}(0000000111) * \frac{X_{\max }-X_{\min }}{2^{\text {CHROMOOOOEESILEE }}-1}
$$

- To decode the entire population at once:

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5
- CHROMOSOME_SIZE will have a size 10
- If CHROMOSOME $=0000000111$ then a decoded value will be

$$
X_{\min }+\mathrm{BASE}_{10}(0000000111) * \frac{X_{\max }-X_{\min }}{2^{\text {CHROMOOOOEESILEE }}-1}
$$

- To decode the entire population at once:

Decoding an individual

- Assume we need to achieve precision of 1024 steps between 0 and 5
- CHROMOSOME_SIZE will have a size 10
- If CHROMOSOME $=0000000111$ then a decoded value will be

$$
X_{\min }+\text { BASE }_{10}(0000000111) * \frac{X_{\max }-X_{\min }}{2^{\text {CHROMOOOONESSIZE }}-1}
$$

- To decode the entire population at once:

```
def Decode(pop):
    return pop.dot(2 ** np.arange(CHROMOSOME_SIZE)[::-1])* X_MAX / float(2**CHROMOSOME_SIZE-1)
```


Reproduction

```
def reproduction(pop, fitness): # nature selection wrt pop's fitness
    idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,
    p=fitness/fitness.sum())
    return pop[idx]
```

- np.random. choice can take a probability p of associated with each individual in the population pop

Reproduction

```
def reproduction(pop, fitness): # nature selection wrt pop's fitness
    idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,
    p=fitness/fitness.sum())
    return pop[idx]
```

- np.random. choice can take a probability p of associated with each individual in the population pop
- A roulette wheel selection in just a single line.

Crossover

```
def crossover(parent1, parent2): # mating process (genes crossover)
    if np.random.rand() < CROSS_RATE:
        cross_over_site = np.random.randint(0, CHROMOSOME_SIZE) # choose crossover site
        child1 = np.concatenate((parent1[0:cross_over_site],parent2[cross_over_site:]))
        child2 = np.concatenate((parent2[0:cross_over_site],parent1[cross_over_site:]))
    else:
            child1, child2 = parent1, parent2
    return child1, child2
```

- Mating between two parents parent1 and parent1 if the probability is less than the CROSS_RATE

Crossover

```
def crossover(parent1, parent2): # mating process (genes crossover)
    if np.random.rand() < CROSS_RATE:
        cross_over_site = np.random.randint(0, CHROMOSOME_SIZE) # choose crossover site
        child1 = np.concatenate((parent1[0:cross_over_site],parent2[cross_over_site:]))
        child2 = np.concatenate((parent2[0:cross_over_site],parent1[cross_over_site:]))
    else:
            child1, child2 = parent1, parent2
    return child1, child2
```

- Mating between two parents parent1 and parent1 if the probability is less than the CROSS_RATE
- Single point crossover.

Crossover

```
def crossover(parent1, parent2): # mating process (genes crossover)
    if np.random.rand() < CROSS_RATE:
        cross_over_site = np.random.randint(0, CHROMOSOME_SIZE) # choose crossover site
        child1 = np.concatenate((parent1[0:cross_over_site],parent2[cross_over_site:]))
        child2 = np.concatenate((parent2[0:cross_over_site],parent1[cross_over_site:]))
    else:
            child1, child2 = parent1, parent2
    return child1, child2
```

- Mating between two parents parent1 and parent1 if the probability is less than the CROSS_RATE
- Single point crossover.
- Two offsprings are generated.

Mutation

```
def mutate(child):
    for point in range(CHROMOSOME_SIZE):
        if np.random.rand() < MUTATION_RATE:
                        child[point] = 1 - child[point]
    return child
```

- Each bit can be mutated (i.e., flipped) with probability MUTATION_RATE
- Single point crossover.
- Two offsprings are generated.

Main Loop

- Below is the main operations done by a simple GA
- Mating the first have of the population with the second half.

```
pop = reproduction(pop, fitness)
pop = np.random.permutation(pop)
i = 0
while i< len(pop)//2 :
    parent1 = pop[i]
    parent2 = pop[-(i+1)]
    child1, child2 = crossover(parent1, parent2)
    child1 = mutate(child1)
    child2 = mutate(child2)
    pop[i] = child1
    pop[-i] = child2
    i+=1
```


References

- Goldenberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning.
- Michalewicz, Z., 2013. Genetic algorithms + data structures= evolution programs. Springer Science \& Business Media

Questions

